Skip to content

Summarize Operator

The Summarize LOP leverages AI models to generate summaries of conversations, tables, or text. It supports various summary types (brief, detailed, bullet points, action items) and integrates with different AI API servers (OpenRouter, OpenAI, Groq, Ollama, LM Studio, Custom) for model selection. This operator is particularly useful for quickly condensing large amounts of information into digestible formats, aiding in decision-making and information retrieval.

  • Python Packages: Required based on selected API server (e.g., openai).
  • ChatTD Operator: Required and must be configured.
  • Conversation (Table DAT): Requires role and message columns.
  • Table (Table DAT): Generic table data.
  • Text (Text DAT): Plain text content.
  • Summary (Text DAT): Contains the generated summary.
Summary (Summary) op('summarize').par.Summary Str
Default:
"" (Empty String)
Summary Type (Summarytype) op('summarize').par.Summarytype Menu
Default:
brief
Options:
brief, detailed, bullet_points, action_items
Input Type (Inputtype) op('summarize').par.Inputtype Menu
Default:
conversation
Options:
conversation, table, text
Custom Prompt (Customprompt) op('summarize').par.Customprompt Str
Default:
None
Auto Call Summary (Autocall) op('summarize').par.Autocall Toggle
Default:
false
Active (Active) op('summarize').par.Active Toggle
Default:
false
Call Summary (Call) op('summarize').par.Call Pulse
Default:
None
JSON Mode (Jsonmode) op('summarize').par.Jsonmode Toggle
Default:
false
Header
Output Settings Header
Max Tokens (Maxtokens) op('summarize').par.Maxtokens Int
Default:
256
Temperature (Temperature) op('summarize').par.Temperature Float
Default:
0.0
Model Selection Header
Use Model From (Modelselection) op('summarize').par.Modelselection Menu
Default:
chattd_model
Options:
chattd_model, custom_model, controller_model
Controller [ Model ] (Modelcontroller) op('summarize').par.Modelcontroller OP
Default:
None
Select API Server (Apiserver) op('summarize').par.Apiserver Menu
Default:
openrouter
Options:
openrouter, openai, groq, ollama, lmstudio, custom
AI Model (Model) op('summarize').par.Model Menu
Default:
llama-3.2-11b-vision-preview
Search (Search) op('summarize').par.Search Toggle
Default:
false
Model Search (Modelsearch) op('summarize').par.Modelsearch Str
Default:
None
Callbacks Header
Callback DAT (Callbackdat) op('summarize').par.Callbackdat DAT
Default:
ChatTD_callbacks
Edit Callbacks (Editcallbacksscript) op('summarize').par.Editcallbacksscript Pulse
Default:
None
Create Callbacks (Createpulse) op('summarize').par.Createpulse Pulse
Default:
None
onSummaryComplete (Onsummarycomplete) op('summarize').par.Onsummarycomplete Toggle
Default:
false
Textport Debug Callbacks (Debugcallbacks) op('summarize').par.Debugcallbacks Menu
Default:
Full Details
Options:
None, Errors Only, Basic Info, Full Details
Show Built In Pars (Showbuiltin) op('summarize').par.Showbuiltin Toggle
Default:
false
Version (Version) op('summarize').par.Version String
Default:
None
Last Updated (Lastupdated) op('summarize').par.Lastupdated String
Default:
None
Chattd (Chattd) op('summarize').par.Chattd OP
Default:
None
Creator (Creator) op('summarize').par.Creator String
Default:
None
Website (Website) op('summarize').par.Website String
Default:
None
Bypass (Bypass) op('summarize').par.Bypass Toggle
Default:
false
Available Callbacks:
  • onSummaryComplete
Example Callback Structure:
def onSummaryComplete(info):
# Called when the summarization process finishes successfully
# info dictionary contains details like:
# - op: The Summarize operator
# - summary: The generated summary text
# - inputType: 'conversation', 'table', or 'text'
print(f"Summary generated: {info.get('summary')[:50]}...")
# Example: op('summary_display_text').text = info.get('summary')
pass
  • Max Tokens affects summary length and processing time.
  • Model choice impacts speed and quality; experiment with different providers/models.
summarize_op = op('summarize1')
conv_dat = op('conversation_log') # Table DAT with role, message cols
summarize_op.inputConnectors[0].connect(conv_dat)
summarize_op.par.Inputtype = 'conversation'
summarize_op.par.Summarytype = 'brief'
summarize_op.par.Call.pulse()
# Summary result in summarize_op.op('summary_dat')
summarize_op = op('summarize1')
table_dat = op('sales_data')
summarize_op.inputConnectors[1].connect(table_dat) # Connect to Table input
s summarize_op.par.Inputtype = 'table'
summarize_op.par.Summarytype = 'bullet points'
s summarize_op.par.Customprompt = "Summarize the key sales trends from this table."
summarize_op.par.Call.pulse()
  • Condensing meeting transcripts.
  • Extracting key info from data tables.
  • Summarizing customer feedback.
  • Creating executive summaries of reports.
  • Automating news article summarization.